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H E A T  E X C H A N G E  OF A C Y L I N D E R  W I T H  

L O W - F R E Q U E N C Y  O S C I L L A T I O N S  

V. t3. R e p i n  UDC 536.25 

It is well known that the presence of a sonic field intensifies hea t -mass  exchange processes  [1-3], and 
that tbAs intensification is due to the presence of s tat ionary seeondary flows formed near  the solid surface  [1]. 
However,  existing theoret ical  t reatments  of this question are limited to the ease of high-frequency oscil lat ions,  
while the situation in which the thickness of the Stokes layer  is comparable  to or  l a rger  than the size of the 
body is no less important.  For  example, such a situation is real ized in heating devices operating in a high- 
frequency instability regime and using atomized liquid or solid fuel. These problems are  of importance in 
the rmoanemomet ry .  In the present  study the example of a c i rcu la r  cylinder will be used to study the effect 
of low-frequency oscillations on local and integral  charac te r i s t i cs  of the heat exchange process .  By low f r e -  
quency, we re fer  to the region where the Stokes layer  thickness [6ac ~ (u/c0) ~ is comparable  to or  l a rger  than 
the cyl inder  size.  

Let a c i rcu la r  cylinder of radius a and infinite length be located within an infinite viscous liquid, which 
at an infinite distance f rom the cyl inder  undergoes oscillations following a harmonic law with cycl ical  f r e -  
quency co. The tempera tures  of the cylinder surface ~7 w and the surrounding medium Too are  considered con- 
slant,  and the t empera tu re  difference (~7 w - T~) is assumed so smal l  that changes in the physical proper t ies  
of the liquid and natural convection may be neglected. Also neglecting dissipative effects,  we wri te  the energy 
equation in the form [3]: 

Or ~ 0 (% T) tt ~ 
0-7- + ~-~- r o (r, 0) = - g 7  V~T (1) 

with boundary conditions 

T ----- I for r = 0, T = 0 for r -+  co. (2) 

The dimensionless quantities in Eqs. (1), (2) are  defined as follows: 

,~ : ( 7  - ~ ) / a , ,  = ~ / B a ,  �9 = 7,0, r = ( ~  - ~ ) / ( ~ -  r 2 ) ,  

where ~ = S / a ;  H = 6 a e / a ;  Sac = ~ ;  S is the amplitude of the acoustical  displacement  of the medium; B = SoJ 
is the amplitude of the velocity pulsations. The tilda superscr ip t  denotes quantities having dimensions.  

We will consider  the case in which ~ << 1 (a s imi lar  assumption was used in solving the hydrodynamic 
portion of the problem [4]). Then, using the perturbation method, we write the solution of Eq. (1) in the form 
of a ser ies  

T = To -,'- ~rl  + 0(~9 (3) 

and s imi lar ly  represen t  the velocity field 

(4) 

We recall that according to [4], }0 is a periodic function of time with frequency co and contains no time-inde- 

pendent component, while ~b I consists of two components, a stationary ~st and a periodic ~b p, which varies with 
a cyclical frequency 2co. 

Since we are interested in the effect of low-frequency oscillations on the heat exchange of the circular 
cylinder, we will assume further that H = O(i). 

We will consider the case where Pr = O(1). Substituting Eqs. (3), (4) in Eq. (i) and collecting terms with 
identical powers of e, we obtain the following equations: 
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0l',) : 't~" ,g2To; (5a) 
(iT [)[' 

aT1 , "l a(q'  o, T,~) i /~  V~'l'l  - ( 5 b )  
0"~ ~ 1 - ~ - r  a ( r , O )  Pr  

We wi l l  c o n s i d e r  Eq. (5a). We w r i t e  T O as the s u m  of s t a t i o n a r y  and pu l s a t i ng  c o m p o n e n t s  

T o = TSo t To p 

and w r i t e  s e p a r a t e l y  equa t ions  fo r  each  c o m p o n e n t  

. _  v rop; (6a) ~)T Pr 
st 

V2T0 := 0. (6b) 

S ince  in bounda ry  cond i t ions  (2) t h e r e  is  no t i m e  d e p e n d e n c e ,  then To p - 0. C o n s e q u e n t l y ,  the  t e m p e r a t u r e  T O 
is  i n d e p e n d e n t  of t i m e ,  and as  fo l lows f r o m  Eq.  (6b), the  hea t  l i b e r a t i o n  p r o c e s s  is  d e t e r m i n e d  by t h e r m a l  
c o n d u c t i v i t y  a lone  (in th is  c a s e  fo r  the  c y l i n d e r  Nu - 0). We a r e  i n t e r e s t e d  in the  s i t u a t i o n  in which  the hea t  
l i b e r a t i o n  p r o c e s s  wi th  low f r e q u e n c y  o s c i l l a t i o n s  is  c o n v e c t i v e ,  i . e . ,  is  d e t e r m i n e d  by the s t r u c t u r e  of  s e c -  
o n d a r y  f lows f o r m e d  in the  o s c i l l a t i o n s .  In th is  c a s e ,  the  P r a n d t I  n u m b e r  P r  hav ing  i n c r e a s e d ,  i t  is n e c e s -  
s a r y  to d e c r e a s e  the  c o n t r i b u t i o n  of conduc t ive  t e r m s  to the hea t  t r a n s f e r  p r o c e s s .  

We wi l l  c o n s i d e r  the  c a s e  w h e r e  P = O(e-1),  i . e . ,  (ePr)  = O(1). Then,  s u b s t i t u t i n g  Eqs .  (3) and (4) in Eq. 
(1) and c o l l e c t i n g  t e r m s  wi th  l ike  powers  of e,  we ob ta in ,  c o n s i d e r i n g  that  (ePr)  = 0(1), 

0To,'0v 0; (7a) 

OT~ ~ i ~ To) It 2 V2T0 ' 
0~ ' i + r  d(r,~) -- 8Pr (7b) 

It  fo l lows f r o m  Eq. (7a) tha t  as  in the c a s e  P r  = O(1), to the  a c c u r a c y  of t e r m s  of o r d e r  5 the  t e m p e r a t u r e  is  
t i m e - i n d e p e n d e n t .  C o n s i d e r i n g  this  f ac t ,  we  wi l l  a v e r a g e  Eq. (7b) o v e r  the  o s c i l l a t i o n  pe r i od .  Then,  keep ing  
in mind  tha t  r ~ cos  T, we ob ta in  V2T0 = 0, i . e . ,  fo r  m o d e r a t e l y  l a r g e  P r a n d t l  n u m b e r s  the p r o c e s s  of hea t  e x -  
change  wi th  low f r e q u e n c y  o s c i l l a t i o n s  is  a l so  conduc t ive .  

We wi l l  c o n s i d e r  the  c a s e  (52pr) = O(1). U s i n g  Eqs .  (1), (3), (4) and r e p e a t i n g  the s a m e  p r o c e d u r e  used  
in d e r i v i n g  Eq. (7), we obta in ,  t o t h e  a c c u r a c y  of t e r m s  of o r d e r  52, 

c~T 2 
0~ 

OTo/OZ = 0; (Sa) 

or~ I O(,o, to) O; 
0r + i + r  a(r, 0) (8b) 

, 0(,0,:,) 1 . ,  [ i + r l  0(r, 0) ~ a(r, = pp---~V2T0. (8c) 

We wi l l  c o n s i d e r  Eq. (8b). S ince  T o is  t i m e  independen t ,  wh i l e  $0 ~ cos  T, then 

T1 := Tip(r, 0) + Tn(r, 0) sin ~. 

Then,  a v e r a g i n g  Eq. (8c) o v e r  the o s c i l l a t i o n  p e r i o d ,  we  obta in  

/ i [o(%,ro) o (%, r~ ) ] \  R ~ V2To. (9) 

The second term on the left side of Eq. (9) is equal to zero, since the functions describing the time dependence 
of ~b 0 and T I are orthogonal over the interval [0, 2~]. Considering this fact, we write Eq. (9) in the form 

, o ( ~ t ,  T0) tP 
i + r  0 (r, 0) e~Pr V2T0, (10) 

w h e r e  c s t  is  the  s t a t i o n a r y  c o m p o n e n t  of the flow funct ion .  

Thus ,  f o r  l o w - f r e q u e n c y  o s c i l l a t i o n s  c o n v e c t i v e  h e a t  t r a n s f e r  b e c o m e s  s i g n i f i c a n t  only  in the  c a s e  of 
l a r g e  P r a n d t l  n u m b e r s  P r  = 0(5-2) .  M o r e o v e r ,  as fo l lows  f r o m  Eq. (10), the  pu l s a t i on  c o m p o n e n t s  of the  v e l o c -  
i ty  and t e m p e r a t u r e  p r o v e  to have  no e f fec t  on the  s t a t i o n a r y  t e m p e r a t u r e  f i e ld .  A s i m i l a r  r e s u l t  was  ob ta ined  
fo r  the  c a s e  of h i g h - f r e q u e n c y  o s c i l l a t i o n s  in [1]. 

F r o m  the s t r u c t u r e  of Eq. (10) i t  a l s o  fo l lows  tha t  in the c a s e  w h e r e  (e2pr) >> 1, n e a r  the  c y l i n d e r  s u r -  
f a ce  t h e r e  w i l l  be f o r m e d  a t h e r m a l  bounda ry  l a y e r ,  the  t h i c k n e s s  of wh ich  [ c o n s i d e r i n g  tha t  n e a r  the  s u r f a c e  
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cst  ~ r 2, and also H = O(1)] is of the o rde r  of O[a(e2Pr) - l /3] .  Then, introducing the va r i ab les  cor responding  to 
the t he rma l  boundary l aye r ,  

g = k-lr,  to(g, O) = To(r, 0), k = (e ~ Pr)-l: ~, 

and also expanding the flow function r s t  and t e m p e r a t u r e  in a s e r i e s  in k 
St 

~)i = k~ i  + k ~  + O (k~), t o "- too + ktol + O (k s) 

and subst i tut ing in Eq. (10) we obtain, l imit ing ourse lves  to t e r m s  f i r s t  o rde r  in k: 

where  

o~1 Otoo o~ Otoo H2 92too 
Oy oO oo oy Oy ~ ' 

I~: = --:- :, oy' /~=0; ~' = : u \ - Y T / ~ , = o "  ' 

We will now de te rmine  the explicit  f o r m  of the function ill. To do this we use tha solution of the hydro-  
dynamic sect ion of the p rob lem,  presented  in [4]: 

*1st =4-~t {.f . ~  [ker~ ) 7 keio 7 _ kelp,) ? kero ,:] + ? [keio ? ker(o,)y _ kero ? kelp,)7 ] a s  ~ , 

(11) 

+ 2 [ker* (a~-) kei0 7 - -  keis ( ~ )  ker0 l?]} sin 20,; 

where  A = ker2y + kei2y; ker~ ' )x  = d / d x  ker  2 x; 7 = H-l;  ke rnx ,  ke inx are  Thompson functions.  

Using Eq. (12), we obtain 

(12) 

i 
~1 = ~ yS sin 20. 

Then we r ewr i t e  Eq. (11) in the f o r m  

Otoo i y2 COS Ot~176 ~2oi~176 
ysinq~ 0q~ 2 q ~  = H 4  oy ' (13) 

where  ~ = 2 0 and is m eas u red  f r o m  a line coinciding with the di rect ion of cyl inder  osci l la t ions .  Introducing the 
va r i ab le  

__~ ( t ~ 1/3 sin 1/~ q) 

X ~ , 9 H ' )  Y [!sinl/~xdzJ l la '  

we reduce  Eq. (13) to an o rd inary  di f ferent ia l  equation 

d~too dt 3x s -oo ~ O, 
dzS + dx 

the solution of which, sa t i s fying the boundary conditions 

too ~--- i at x = 0, t00 ~ 0 

has the f o r m  

at X -+ co S 

too = I - -  r--~73) J e a~, 
0 

(14) 

where  F(a)  is a g a m m a  function. 

Using Eq. (14), we find that the local t h e rma l  flux f r o m  the cyl inder  is equal to 

q = - - ~ . ( O t ~ 1 7 6  I (Tw--  ~ )  = 0,85 + (PrR4)l!~ sinl/S (P 
0r / 7=~ F'~ ] l/a �9 [!sin lls zazJ 
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Fig. 1 

Then the expression for the local dimensionless heat liberation coefficient, calculated over cylinder diameter, 
takes on the form 

Nu = 0,85 Pr 1/a Re~"~ a sinl/~ (p 
[ ! sinl/~ ~dX] i/a ~ 

(15) 

where Rep = Ud/~ is the Reynolds number calculated from the mean square pulsation velocity (U = B/R)  and 
cylinder diameter. 

The distribution of the local heat exchange coefficient along the cylinder surface as calculated by Eq. (15) 
is shown in Fig. i. Also shown is the structure of secondary flows, formed near the cylinder with low-fre- 
quency oscillations, taken from [4]. As follows from Fig. I, the heat exchange coefficient distribution over the 
cylinder surface is not uniform. Thus, at the point where the secondary flows are incident on the cylinder sur- 
face, which point lies on a line coinciding with the oscillation direction, the local heat exchange coefficient 
reaches its maximum value, decreasing with movement toward the point of departure of the secondary flows 
from the surface, at which point Nu = 0. A similar distribution for high-frequency cylinder oscillations was 
first obtained in [I]~ 

Using Eq. (15), we will calculate an average over the surface for the dimensionless heat exchange coef- 
ficient N'u a = 0.73Prl/3Re~/3, or 

N'--ff = 0.73 (Ud/]/-~)"/~. (16) 

Thus ,  wi th  l o w - f r e q u e n c y  c y l i n d e r  o s c i l l a t i o n s  the  d i m e n s i o n l e s s  hea t  exchange  c o e f f i c i e n t  is  p r o p o r -  
1 t s T 2/3 t e 2/3 r t i ona l  to the pu l s a t i on  ve_oci y a U , o th  c y l i n d e r  s i z e  as  d , i n v e r s e l y  p_opo r t i ona l  to the t h e r m a l  d i f -  

f u s iv i t y  as  D -~/3, and to the  i d n e m a t i c  v i s c o s i t y  as  ~-1/3, and in c o n t r a s t  to the c a s e  of h i g h - f r e q u e n c y  o s c i l l a -  
t ion ,  does  not  depend  on f r e q u e n c y .  

In [5] r e s u l t s  w e r e  p r e s e n t e d  f r o m  an e x p e r i m e n t a l  i n v e s t i g a t i o n  of hea t  exchange  wi th  a c y l i n d e r  1 .98 .  
10 -2 m m  in d i a m e t e r ,  o s c i l l a t i n g  in a h igh ly  v i s c o u s  l iquid  (fuel o i l ,  auto o i l ,  s p i n d l e  oi l ) .  The o s c i l l a t i o n  f r e -  
quency  was  v a r i e d  o v e r  the  r a n g e  1 .7 -27 .0  Hz. K i n e m a t i c  v i s c o s i t y  was  ~ = (66.2-1.28) �9 10 -4 m 2 / s e c ,  P r a n d t l  
n u m b e r  P r  = (150-1.4) �9 102, and a m p l i t u d e  of c y l i n d e r  d i s p l a c e m e n t  S = (0.25-2.0)  �9 10 -2 m,  i . e . ,  the m a j o r i t y  
of the a s s u m p t i o n s  made  in the  t h e o r e t i c a l  so lu t i on  of  the p r o b l e m  w e r e  fu l f i l l ed ,  wi th  the excep t ion  of s m a l l  
amplitude of the medium displacement. 

The experimental formula of these authors had the form 

~-~ = 0.t46Re~67pr TM, 
i.e., the exponent of the Reynolds number practically coincides with the theoretical value, although the depen- 
dence on Prandtl number is stronger than theory predicts. 

In [6], on the basis of the results of [5] and their own experimental results, the authors recommended 
the following empirical expression for calculating heat exchange of a cylinder with low-frequency oscillations: 

-- 0 ,64  0,32 Nu~0A82Rep Pr , (17) 

H e r e  the func t iona l  connec t ion  b e ~ r e e n  the d i m e n s i o n l e s s  hea t  exchange  c o e f f i c i e n t  and the r e m a i n i n g  p a r a -  
m e t e r s  of the  p r o c e s s  p r a c t i c a l l y  c o i n c i d e s  wi th  t h e o r y .  

Equa t ion  (17) was  a l so  ob ta ined  in a r e c e n t  e x p e r i m e n t a l  s tudy  [7]. 

We m u s t  note  a c e r t a i n  e l e v a t i o n  in the  v a l u e s  of the  hea t  exchange  c o e f f i c i e n t  c a l c u l a t e d  wi th  the  a n a -  
l y t i c a l  Eq. (16). This  d i s a g r e e m e n t  is  in ou r  opin ion  p r i m a r i l y  due to d i s r u p t i o n  of the  cond i t ion  of low o s c i l l a -  
t ion  a m p l i t u d e ,  and a l so  to  the f ac t  tha t  in s o l u t i o n  of the  t h e r m a l  p a r t  of the p r o b l e m  a v e l o c i t y  p r o f i l e  o b -  
t a i ned  by the  Ozeen method  was  u s e d ,  th is  me thod  g iv ing  e l e v a t e d  v e l o c i t y  va lue s  n e a r  the  c y l i n d e r  s u r f a c e  due 
to an i n c r e a s e d  c o n t r i b u t i o n  of c o n v e c t i v e  t e r m s  to the mot ion  equa t ion ,  and thus e l e v a t i n g  the v a l u e s  of the  
hea t  exchange  coe f f i c i en t .  
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EFFECT OF THERMAL DIFFUSION ON FREE CONVECTION 

O F  A B I N A R Y  M I X T U R E  IN A C A V I T Y  W I T H  A 

S Q U A R E  C R O S S - S E C T i O N  

M. I, Kislukhin, A. Yu, Pinyagin, 
and A, F. Pshenichnikov 

UDC 532.72 

It is well known that the phenomenon of thermal diffusion can greatly affect the convective stability of a 
binary- mixture consisting of nonreaeting components [I]. Convective stability of equilibrium in a liquid binary 
mixture in a planar horizontal layer was studied in [2-9]. In [3-7], a hysteresis loop was obtained in Benard's 
problem for a two-component fluid and in [3-5] this problem was also studied experimentally. _The effect of 
thermal diffusion on the convective stability of equilibrium and convective heat and mass transfer in a vertical 
gap was studied in [i, I0, II]. In [12], the effect of thermal diffusion on heat transfer through a boundary layer 
was studied theoretically and experimentally. Free convection of a binary fluid mixture in an inclined rectan- 
gular cavity was investigated in [13]. 

In this paper, we study numerically free convection of a binary mixture in a square horizontal cylinder 
taking into account thermal diffusion. We examine lateral heating. It is assumed that thermal diffusion is the 
only reason for the appearance of a concentration inhomogeneity. The investigation is carried out for gas mix- 
tures and aqueous solutions of salts. It is shown that in the presence of weak convection the normal thermal 
diffusion can double the convective velocity, while anamolous thermal diffusion can decrease it. For Rayleigh 
numbers of the order of 103, a vertical component appears in the concentration gradient at the center of the 
cavity. For anamalous thermal diffusion, it turns out that the maximum value of the stream function is not 
a unique function of the Rayleigh number (hysteresis is observed). For Rayleigh numbers exceeding 104, the 
effect of thermal diffusion on convective motion can be neglected. 

We will examine aninfinite square horizontal cylinder with height a, filled with a binary fluid mixture. 
The lateral boundaries are impenetrable and have different temperatures T I and T 2. The upper and lower 
boundaries are also impenetrable to matter and have a linear temperature distribution. If there is no convec- 
tion in the cavity, then the concentration field arising as a result of the Soret effect is nearly linear [14, 15]. 
The maximum concentration differentials are very small [i!], so that we will neglect energy flow caused by 
the inhomogeneity of the mixture. The Sorer coefficient is assumed to be constant. The system of dimension- 
less equations describing two dimensional motion has the form [I, 16] 

7 o~ ab, a.v a.~: A~r. -F G r  \ a ,  -~  ~ a~: } '  
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